Marcadores

terça-feira, 19 de janeiro de 2021

2º anos A, B e D - Revisão - Matemática - 3ª unidade

 

Colégio Estadual “Fausto Cardoso”

Disciplina: Matemática                     3ª unidade

Profª Elen Carla

2 º anos A, B e D

Revisão – 07/01/2021

Análise combinatória

análise combinatória ou combinatória é a parte da Matemática que estuda métodos e técnicas que permitem resolver problemas relacionados com contagem.

Muito utilizada nos estudos sobre probabilidade, ela faz análise das possibilidades e das combinações possíveis entre um conjunto de elementos.

Fatorial

O fatorial de um número natural é definido como o produto deste número por todos os seus antecessores. Utilizamos o símbolo ! para indicar o fatorial de um número.

Define-se ainda que o fatorial de zero é igual a 1.

Exemplo

0! = 1
1! = 1
3! = 3.2.1 = 6
7! = 7.6.5.4.3.2.1 = 5 040
10! = 10.9.8.7.6.5.4.3.2.1 = 3 628 800

Note que o valor do fatorial cresce rapidamente, conforme cresce o número. Então, frequentemente usamos simplificações para efetuar os cálculos de análise combinatória.

Permutação simples

As permutações são agrupamentos ordenados, onde o número de elementos (n) do agrupamento é igual ao número de elementos disponíveis.

Note que a permutação é um caso especial de arranjo, quando o número de elementos é igual ao número de agrupamentos. Desta maneira, o denominador na fórmula do arranjo é igual a 1 na permutação.

Assim a permutação é expressa pela fórmula:

 

Exemplo

Para exemplificar, vamos pensar de quantas maneiras diferentes 6 pessoas podem se sentar em um banco com 6 lugares.

Como a ordem em que irão se sentar é importante e o número de lugares é igual ao número de pessoas, iremos usar a permutação:

 

Logo, existem 720 maneiras diferentes para as 6 pessoas sentarem neste banco.

 

Exemplo:

Considere a palavra DILEMA e determine:

a)     O número total de anagramas

P6 = 6! = 6.5.4.3.2.1= 720

b)     O número de anagramas que começa com a letra D

Para calcular fixamos a letra D e permutamos as demais 5 letras, logo:

P5 = 5.4.3.2.1= 120

 

Arranjo simples

A análise combinatória estuda dois tipos de agrupamentos: Arranjos e combinações. Sendo que diferem em arranjos simples, combinações simples.

Arranjos são agrupamentos nos quais a ordem dos seus elementos faz a diferença. Por exemplo, os números de três algarismos formados pelos elementos {1, 2 e 3} são:

312, 321, 132, 123, 213, 231

Esse agrupamento é um arranjo, pois a ordem dos elementos 1, 2 e 3 diferem. E é considerado simples, pois os elementos não se repetem.

Para que tenhamos arranjos simples é preciso ter um conjunto de elementos distintos com uma quantidade qualquer de elementos, sendo que os arranjos simples formados irão possuir n elementos, sendo que essa quantidade será igual ou menor que a quantidade de elementos do conjunto.

Quantas “palavras” (com sentido ou não) de 5 letras distintas podemos formar com as 20 primeiras letras do nosso alfabeto?

Não é necessário montar todas os arranjos possíveis para saber a sua quantidade, basta aplicar a fórmula:

n,p =      n!     
              (n – p)!

Sendo que o conjunto é formado por 20 elementos (n = 20) que serão unidos de 5 em 5 (p = 5). Substitua a fórmula.




Portanto, a quantidade de arranjos formados com as 20 primeiras letras do nosso alfabeto unidas de 5 em 5 é 1860480.

Combinação simples

Na combinação simples, a ordem dos elementos no agrupamento não interfere. São arranjos que se diferenciam somente pela natureza de seus elementos. Portanto, se temos um conjunto A formado por n elementos tomados p a p, qualquer subconjunto de A formado por p elementos será uma combinação, dada pela seguinte expressão:


Por exemplo, considere um conjunto com seis elementos que serão tomados dois a dois:


Atividade google forms