Marcadores

quinta-feira, 10 de setembro de 2020

2° ano C (I Atividade Remota de Matemática)

 

I AULA REMOTA DE MATEMÁTICA (2ª unidade)

 

Professora: Evany de Carvalho                                                                   2ª Série/Ensino Médio

Link da videoaula sugerida: https://www.youtube.com/watch?v=sw18GQESKpA

 

ESTUDO DE MATRIZES

A matriz é comumente utilizada para a organização de dados tabulares a fim de facilitar a resolução de problemas. As informações das matrizes, sejam estas numéricas ou não, são dispostas organizadamente em linhas e colunas.

O conjunto das matrizes munido das operações de adição, subtração e multiplicação e de características, como elemento neutro e inverso, forma uma estrutura matemática que possibilita sua aplicação em diversos campos dessa grande área do conhecimento.

Representação de matrizes

Antes de começarmos os estudos sobre matrizes, é necessário estabelecer algumas notações quanto às suas representações. As matrizes são sempre representadas por letras maiúsculas (A, B, C…), que são acompanhadas por índices, nos quais o primeiro número indica a quantidade de linhas, e o segundo, o número de colunas.

A quantidade de linhas (fileiras horizontais) e colunas (fileiras verticais) de uma matriz determina sua ordem. A matriz A possui ordem m por n. As informações contidas em uma matriz são chamadas de elementos e ficam organizadas entre parênteses, colchetes ou duas barras verticais, veja os exemplos:

A matriz A possui duas linhas e três colunas, logo, sua ordem é dois por três → A2x3.

 

A matriz B possui uma linha e quatro colunas, logo, sua ordem é um por quatro, por isso recebe o nome de matriz linha → B1x4.

A matriz C possui três linhas e uma coluna, e por isso é chamada de matriz coluna e sua ordem é três por um → C3x1.

Podemos representar genericamente os elementos de uma matriz, isto é, podemos escrever esse elemento utilizando uma representação matemática. O elemento genérico será representado por letras minúsculas (a, b, c…), e, assim como na representação de matrizes, ele também possui índice que indica sua localização. O primeiro número indica a linha em que o elemento está, e o segundo número indica a coluna na qual ele se localiza.


 

Considere a seguinte matriz A, faremos a listagem de seus elementos.

Observando o primeiro elemento que está localizado na primeira linha e primeira coluna, ou seja, na linha um e coluna um, temos o número 4. A fim de facilitar a escrita, vamos denotá-lo por:

a11 → elemento da linha um, coluna um

Assim temos os seguintes elementos da matriz A2x3: (2 linhas e 3 colunas)

a11 = 4

a12 =16

a13 = 25

a21 = 81

a22 = 100

a23 = 9

De modo geral, podemos escrever uma matriz em função de seus elementos genéricos, essa é a matriz genérica.

 

Uma matriz de m linha e n colunas é representada por:

Exemplo

Determine a matriz A = [aij ]2x2, que possui a seguinte lei de formação aij = j2 – 2i. Dos dados do enunciado, temos que a matriz A é de ordem dois por dois, ou seja, possui duas linhas e duas colunas, logo:

Além disso, foi dada a lei de formação da matriz, ou seja, a cada elemento satisfaz-se a relação aij = j2 – 2i. Substituindo os valores de i e j na fórmula, temos:

a11 = (1)2 - 2(1) = -1

 

a12 = (2)2 - 2(1) = 2

 

a21 = (1)2 - 2(2) = -3

 

a22 = (2)2 - 2(2) = 0

Portanto, a matriz A é: